NON-ASSOCIATIVE AND NONDISTRIBUTIVE PARARING

Jalaj Kumar Kashyap ${ }^{1}$ and Shanker Kumar ${ }^{2}$
${ }^{1}$ Dept. of Mathematics, T.M. Bhagalpur University, Bhagalpur,
${ }^{2}$ Dept. of Mathematics, T.M. Bhagalpur University, Bhagalpur.

Abstract

In this paper a particular type of associative (non-associative) non-distributive ring has been introduced with the help of a newly defined distributive property called the para-distributive property. Different types of pararing have been illustrated with examples. Lastly some important properties of the pararing have been studied.

Keywords: Para-distributive property, Basal, Mixed ring, Pararing, Sub-pararing.

1. Introduction

Non-associative and non-distributive rings of different varieties have introduced quasi-ring $R(+, 0)$ with the help of quasidistributive properties [3]:

$$
\begin{align*}
& x \mathrm{o}+(y+z)=x \text { o } y+x \mathrm{o} z-x ; \\
& (x+y) \circ z=x \mathrm{o} z+y \circ z-z ; \\
& x, y, z \in R(+, 0) . \tag{1.1}
\end{align*}
$$

Quasi-distributive ring is not a ring and vice versa. Further, $\theta x \neq \theta$ and $x \theta \neq \theta, \theta$ being the nullelement of $R(+, 0)$. $x \circ(y+z)=x$ о $y=x \circ z-x \circ \theta$,
$(y+z)$ o $x=y$ o $x+z$ o $x-\theta$ o x
to deal with weak-ring and weak lie algebras respectively. Weak-ring and weak lie algebras are not ring and lie algebras respectively [1].

For quasi-vector space v over F we have used a generalised form of scalar distribution property
$(\alpha+\beta+\gamma) x=\alpha x+\beta x+\gamma ; \alpha, \beta, \gamma \in F, x \in \nu$.
In this paper para-distributive and right (left) para-distributive properties have been introduced in an analogous way leading to the definition of pararing, right (left) ring and mixed ring of a pararing such that any ring is a right (left) ring and mixed ring which are again pararing but the converse is not true.

2. Definitions.

(i) A system of double composition $R(+, 0)$ is said to satisfy para-distributive law and right (left) para-distrubitive law if

$$
\begin{equation*}
x \mathrm{o}(y+z+\omega)=x \circ y+x \mathrm{o} z+x \circ \omega, \tag{2.1}
\end{equation*}
$$

$(x+y+z) \circ \omega=x \circ \omega+y \circ \omega+z \circ \omega$,
$x \circ(y+z)=x$ o $y+x \circ z ;$
$(x+y+z) \mathrm{o} \omega=x \mathrm{o} \omega+y \circ \omega+z \circ \omega$,
$x \mathrm{o}(y+z+\omega)=x \circ y+x \circ z+x \circ \omega$,
$(x+y) \mathrm{o} \omega=x \mathrm{o} \omega+y \circ \omega$.
Non-distributive property (1.1) and (1.2) follow as a particular case of (2.1) and (2.2).
A system $R(+, 0)$, which is additively a group, is called a pararing or a left (right) ring of a pararing according as it satisfies (2.1) to (2.6).
The system $R(+, 0)$ is called a mixed ring if it is the union of a right and a let ring.
For a left and a right ring $\theta x \neq \theta$ and $x \theta \neq \theta$ respectively. For an associative mixed ring $\theta x \theta=\theta$. For a pararing $\theta x \neq \theta, x \theta$ $\neq \theta$ and also $\theta x \theta \neq \theta$ if the pararing is associative.
(ii) A system $R(+, 0)$ is said to satisfy quasi-anticommutative property if
$x 0 y+y$ o $x+y o z+z o y+z o x+x \circ z=\theta$
(iii) A pararing is called a Jordan pararing if it satisfies
$(x \circ y) \circ(x \circ x)=[x \circ\{y \circ(x \circ x)\}]=\theta$
(iv) A non-distributive system is said to satisfy binary non-lie properties of type
$x^{2}=\theta,(((x \circ y) \circ y) \circ x)+(((y \circ x) \circ x) \circ y)=\theta$.
$x^{2}=\theta,(((x \circ y) \circ x) \circ y)+(((y \circ x) \circ x) \circ y)=\theta$.
(v) A subset Y of a pararing X is called a subpararing of X if Y is a pararing with respect to the operation of x restricted to y.
(vi) A ring, left (right) ring and mixed ring of pararing X are all subpararing of X.
(vii) Y is called semi-basal if it is a mixed ring of X. Y is called basal if it is a ring of X. It is called X non-basal if it is not semi-basal.
(viii) A left (right) subpararing of a right (left) ring X is considered as pararing basal if it is a ring of X . It is called non-basal if it is not basal.
Examples: Let $R(+, \cdot)$ be a ring which is additively periodic of order 2 and let
(1) x o $y=x+y+x y$;
(2) x o $y=x+y+x y-y x$;
(3) x o $y=\mathrm{x}+y+x(x y)-x(y x)$.

Thus $R(+, 0)$ is a pararing in each case.

3. Observation

(i) The above Example (1) is a Jordan pararing. It is, in general, non-associative. It does not satisfy above alternative Example and flexible laws. It is associative if $R(+, \cdot)$ is so. It does not satisfy $x^{2}=\theta$, but it is quasi-anticommutative, where $R(+, \cdot)$ is commutative [2].
(ii) Example (2) is a pararing which satisfies binary non-lie property.
(iii) Example (3) is a pararing quasi-anticommutative but not anticommutative.

1. Let $G(+)$ be a group periodic of order 2. Then $G(+, 0)$ is a right ring if x o $y=x$ and left ring if x o $y=x ; x, y \in G$.
2. Let $R(+, \cdot)$ be a ring which is additively periodic of order 2 . Then $R(+, 0)$ is a right ring if
x ० $y=y=x+x y$;
x о $y=x+x y+y x$.
$R(+, 0)$ is a left ring if
x о $y=y+x y$;
x ० $y=y+x y+y x$.
Let X be an arbitrary pararing. Let X^{\prime} and $X^{\prime \prime}$ be a right (left) ring of X. Then
$X_{0}^{\prime}=\left\{x: x \in X^{\prime}, x \theta=0\right\}$ is a basal subring of $X^{\prime} ;$
$X_{0}^{\prime \prime}=\left\{x: x \in X^{\prime \prime}, \theta x=\theta\right\}$ is a basal subring of $X^{\prime \prime} ;$
$\bar{X}_{0,0}=\{x: x \in X, \theta x=\theta, x \theta=\theta\}$ is a basal subring of X.
If, further, X is associative, then
$X_{0,0}=\{x: x \in X, \theta x \theta=0\}$ is a semi-basal subring of X.
Let X, X^{\prime} and $X^{\prime \prime}$ are as defined in Section 4. Then
$X^{\prime, 0}=\left\{x: x \in x^{\prime}\right\}$ is a left subring of $X^{\prime} ;$
$X^{\prime \prime, 0}=\left\{x: x \in x^{\prime \prime}\right\}$ is a right subring of $X^{\prime \prime} ;$
$X=\{\theta x \theta, x \in x\}$ is a subring of X.
where $x \theta \cdot y \theta=(x y) \theta, \theta x \cdot \theta y=\theta(x y) ;(\theta x \theta \cdot(\theta y \theta)=\theta(x y) \theta$.

4. Properties

Property 4.1. Let $\left(X^{\prime}, X^{\prime \prime}\right)$ be a right (left) ring of an associative pararing X containing identity for multiplication. Then
(i) $\quad\left(x^{\prime}, x^{\prime, 0}, x_{0}^{\prime}\right)$ is additively commutative iff

$$
\left(x+x^{\prime, 0}\right)=x^{\prime, 0}+x, \forall x \in x^{\prime}, x^{\prime, 0} \in X^{\prime, 0} .
$$

(ii) $\left(x^{\prime \prime}, x^{\prime \prime,}, x_{0}^{\prime \prime}\right)$ is additively commutative iff

$$
\left(x+x^{\prime \prime, 0}\right)=\left(x^{\prime \prime, 0}+x\right), \forall x \in x^{\prime \prime}, x^{\prime \prime, 0} \in X^{\prime \prime, 0} .
$$

(iii) $\left(x, x^{0,0}, x_{0,0}\right)$ is additively commutative iff

$$
\left(x+x^{0,0}\right)=\left(x^{\prime \prime, 0}+x\right), \forall x \in x, x^{0,0} \in X^{0,0} .
$$

Proof. (i) To prove the condition sufficient, let e be the identity for multiplication and θ the null element for $x, y \in x^{\prime}$.

$$
(e+e+\theta)(x+y+\theta)=e(x+y+\theta)+e(x+y+\theta)+(x+y+\theta)
$$

$$
\begin{aligned}
& \text { [by right para-distributive property] } \\
& =x+y+\theta+y+y+\theta+\theta x+\theta \\
& =x+y+x+y+\theta x+\theta y
\end{aligned} \quad \text { [by left para-distributive property] }
$$

[by left para-distributive property]
[by right para-distributive property]
[by cancellation property]
From (4.1) and (4.2) it follows that

$$
y+x+y+\theta x=x+\theta x+y+y
$$

or, $\theta x+y+x+y=\theta x+x+y+y$

$$
\therefore y+x=x+y
$$

Hence, X^{\prime} is additively commutative.
Necessity of the condition is obvious.
(ii) Proof is similar.
(iii) $(e+e+\theta)(x+\theta x+y)=e(x+\theta x+y)+e(x+\theta x+y)+\theta(x+\theta x+y)$ [by right para-distributive property]
$=x+\theta x+y+x+\theta x+y+\theta x+\theta x \theta+\theta y \quad$ [by left para- distributive property
Again, $(e+e+\theta)(x+\theta x+y)=(e+e+\theta) x+(e+e+\theta) x \theta+(e+e+\theta) y$ [by left para-distributive property]
$=x+x+\theta x+x \theta+x \theta+\theta x \theta+y+y+\theta y \quad$ [by right para-distributive property]
$=x+x+\theta x+\theta x \theta+y+y+\theta y[[\because x \theta+x \theta=0]$
From (4.3) and (4.4) is follows that

$$
x \theta+y+x+\theta x+y+\theta x+\theta x \theta=x+\theta x+\theta x \theta+y+y \quad[\text { by cancellation property }]
$$

or, $\quad y+x+x \theta+\theta x+y+\theta x+\theta x \theta=x+\theta x+\theta x \theta+y+y$
or, $y+x+y+\theta x+\theta x \theta=x+\theta x+\theta x \theta+y+y$
or, $\quad y+x+y+\theta x+\theta x \theta=x+\theta x+y+y+\theta x \theta$
or, $\quad y+x+y+\theta x=x+y+y+\theta x$
$\therefore x+y=y+x$
[by cancellation property]
Hence, X is commutative.
Property 4.2. Let ($X, X^{0,0}, X_{0,0}$) be an associative pararing which is additively commutative.

Let ($X^{\prime}, X^{\prime 0}, X_{0}^{\prime}$) and ($X^{\prime \prime}, X^{\prime \prime, 0}, X_{0}^{\prime \prime}$) be the right and left rings respectively of X. Then the subset
(i) $\left(x^{\prime}+x^{\prime} \theta, x^{\prime} \in X\right)$ is a basal subpararing of X^{\prime};
(ii) $\left(x^{\prime \prime}+\theta x^{\prime \prime}, x^{\prime \prime} \in X\right)$ is a basal subpararing of $X^{\prime \prime}$;
(iii) $(x+\theta x \theta, x \in X)$ is a semi-basal subpararing of X,
where $\left(x^{\prime}+x^{\prime} \theta\right)\left(y^{\prime}+y^{\prime} \theta\right)=x^{\prime} y^{\prime}+\left(x^{\prime} y\right) \theta,\left(x^{\prime \prime}+\theta x^{\prime \prime}\right)\left(y^{\prime \prime}+\theta y^{\prime \prime}\right)=\left(x^{\prime \prime} y^{\prime \prime}\right)+\theta\left(x^{\prime \prime} y^{\prime \prime}\right)$;
$(x+\theta x \theta)(y+\theta y \theta)=x y+\theta(x y) \theta, x^{\prime} y^{\prime} \in X^{\prime} ; x^{\prime \prime}, y^{\prime \prime} \in X^{\prime \prime} ; x y \in X$.
Proof. (iii) $(x+\theta x \theta)(y+\theta y \theta)=(x+y)+\theta x \theta+\theta y \theta \quad[\because$ is additively commutative $]$

$$
\begin{align*}
& =(x+y)+\theta x \theta+\theta y \theta+\theta \theta \theta \\
& =(x+y+\theta x \theta+y \theta+\theta \theta) \tag{4.5}\\
& =(x+y)+\theta+(x+y+\theta) \theta \\
& =(x+y)+\theta+(x+y) \theta
\end{align*}
$$

$$
=(x+y+\theta x \theta+y \theta+\theta \theta) \quad[\text { by left para-distributive property] }
$$

$$
=(x+y)+\theta+(x+y+\theta) \theta \quad[\text { by right para-distributive property }]
$$

By definition $(x+\theta x \theta)(y+\theta y \theta) \in X$.
Obviously, $(x+\theta x \theta)(y+\theta y \theta)(\tau+\theta+\theta)=\{(x+\theta x \theta)(y+\theta y \theta)\}(\tau+\theta+\theta)$. Now

$$
\begin{aligned}
(x+\theta x \theta)\{(y+\theta y \theta)\}+(\tau+\theta \tau \theta)+(\omega+\theta \omega \theta) & =(x+\theta x \theta)\{(y+\tau+\omega)+\theta(y+\tau+\omega \theta)\} \quad[\text { by (4.5)] } \\
& =x(y+\tau+\omega)+\theta\{x(y+\tau+\omega) \theta \\
& =(x y+x \tau+x \omega)+\theta\{x y+x \tau+x \omega) \theta \quad \text { [by left para-distributive property] } \\
& =\{x y+\theta(x y) \theta\}+\{x \tau+\theta(x \tau) \theta\}+\{x \omega+\theta(x \omega) \theta \quad[\text { by }(4.5)] \\
& =(x+\theta x \theta)\{(y+\theta y \theta)\}+(x+\theta \tau \theta)(\tau+\theta \tau \theta)+(x+\theta x \theta)+(\omega+\theta \omega \theta)
\end{aligned}
$$

Hence, left para-distributive property holds. Similarly, right para-distribstive property can also be verified.
So, $(x+\theta x \theta, x \in X)$ is a subpararing of X. Again,

$$
\begin{aligned}
\theta(x+\theta x \theta) \theta & =\{\theta(x+\theta x \theta)\} \theta \\
& =\{\theta(x+\theta x \theta)+\theta\} \theta \\
& =(\theta x+\theta x \theta+\theta) \theta \\
& =\theta x \theta+\theta x \theta+\theta \\
& =\theta
\end{aligned}
$$

[by left para-distibutive and associative properties]
[by right para-distributive and associative properties] [$\because X^{0,0}$ is periodic of order 2]

Hence, $(x+\theta x \theta, x \in X)$ is a semi-basal slubpararing of X
(i) Property (ii) can be similarly verified.
(i) Property (i) can be verified similarly.

REFERENCES

[1] Bors, D. and Din, L. T. Math., XVI (1971)
[2] Hua, X. Y., Sci. Simica, 2 (1978) 135
[3] Tudora, L., Mat. N., 15 (1969) 275

